Connected and Tree Domination on Goldberg and Flower Snarks

نویسندگان

  • Chengye Zhao
  • Huali Liu
چکیده

In this paper, we study the Goldberg Snarks Gk, twist Goldberg Snarks TGk, Flower snarks Fk, and show the exact value of connected and tree domination number of them. Mathematics Subject Classification: 05C35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The total-chromatic number of some families of snarks

The total chromatic number χ T (G) is the least number of colours needed to colour the vertices and edges of a graph G, such that no incident or adjacent elements (vertices or edges) receive the same colour. It is known that the problem of determining the total chromatic number is NP-hard and it remains NP-hard even for cubic bipartite graphs. Snarks are simple connected bridgeless cubic graphs...

متن کامل

The circular chromatic index of Goldberg snarks

We determine the exact values of the circular chromatic index of the Goldberg snarks, and of a related family, the twisted Goldberg snarks.

متن کامل

Diana Sasaki Simone Dantas Celina

Snarks are cubic bridgeless graphs of chromatic index 4 which had their origin in the search of counterexamples to the Four Color Conjecture. In 2003, Cavicchioli et al. proved that for snarks with less than 30 vertices, the total chromatic number is 4, and proposed the problem of finding (if any) the smallest snark which is not 4-total colorable. Several families of snarks have had their total...

متن کامل

The Circular Chromatic Index of Flower Snarks

We determine the circular chromatic index of flower snarks, by showing that χc(F3) = 7/2, χ ′ c(F5) = 17/5 and χ ′ c(Fk) = 10/3 for every odd integer k ≥ 7, where Fk denotes the flower snark on 4k vertices.

متن کامل

6-decomposition of Snarks

A snark is a cubic graph with no proper 3-edge-colouring. In 1996, Nedela and Škoviera proved the following theorem: LetG be a snark with an k-edge-cut, k ≥ 2, whose removal leaves two 3-edgecolourable componentsM and N . Then bothM and N can be completed to two snarks M̃ and Ñ of order not exceeding that of G by adding at most κ(k) vertices, where the number κ(k) only depends on k. The known va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016